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Abstract

An edge double Roman dominating function (EDRDF) on a graph G is a function f : E(G)→ {0, 1, 2, 3} satisfying the condition
that such that every edge e with f(e) = 0, is adjacent to at least two edge e, e ′ for which f(e) = f(e ′) = 2 or one edge e ′′ with
f(e ′′) = 3, and if f(e) = 1, then edge e must have at least one neighbor e ′ with f(e ′) > 2. The Edge double Roman dominating
number of G, denoted by γ ′dR(G), is the minimum weight w(f) =

∑
e∈E(G) f(e) of an edge double Roman dominating function

f of G. In this paper, we introduction some results on the edge double Roman domination number of a graph. Also, we provide
some upper and lower bounds for the edge double Roman domination number of graphs.
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1. Introduction

In this paper, G is a simple graph with vertex set V = V(G) and edge set E = E(G). The order |V | of G
is denoted by n = n(G). For every vertex v ∈ V , the open neighborhood of v is the set N(v) = {u ∈ V(G) :
uv ∈ E(G)} and the closed neighborhood of v is the set N[v] = N(v) ∪ {v}. The degree of a vertex v ∈ V is
degG(v) = |N(v)|. A graph G is k-regular if d(v) = k for each vertex v of G. A leaf is a vertex of degree 1,
a support vertex is a vertex adjacent to a leaf, and a strong support vertex is a support vertex adjacent to at
least two leaves. An edge incident to a leaf is called a pendant edge. A tree is an acyclic connected graph.
A tree T is a double star if it contains exactly two vertices that are not leaves. For a,b > 2, a double star
whose support vertices have degree a and b is denoted by S(a,b). If T is a rooted tree, we for each vertex
v, we denote by Tv the sub-rooted tree rooted at v. The height of a rooted is the maximum distance from
the root to a leaf.

The complement of a graph G is denote by G. We write Kn for the complete graph of order n, Cn
for the cycle of length n, and Pn for the path of order n. A matching is any independent set of edges.
A maximal matching is a matching X so that V(X) − V(G) is an independent set of vertices. A perfect
matching in graph G is a matching so that V(X) = V(G). The line graph of a graph G, written L(G), is the
graph whose vertices are the edges of G, with ee ′ ∈ E(L(G)) when e = uv and e ′ = vw in G. It is easy to
see that L(K1,n) = Kn,L(Cn) = Cn and L(Pn) = Pn−1. For a subset S of vertices of G, and a vertex x ∈ S,
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we may that a vertex y /∈ S is a private neighbor of x with respect to S if N(y)∩ S = {x}.
A double Roman dominating function on a graph G is defined by Beeler, Haynes and Hedetniemi in [7] as a
function f : V −→ {0, 1, 2, 3} having the property that if f(u) = 0, then vertex u has at least two neighbors
assigned 2 under f or one neighbor w with f(w) = 3, and if f(u) = 1, then vertex u must have at least one
neighbor w with f(w) > 2. The weight, ω(f), of f is defined as f(V(G)). The double Roman domination num-
ber of a graph G, denoted by γdR(G), is the minimum weight of any double Roman dominating function
of G. Further results on the double Roman domination number can be found in [5, 3, 1].
A subset X of E(G) is called an edge dominating set of G if every edge not in X is adjacent to some edge in
X. The edge domination number γ ′(G) of G is the minimum cardinality taken over all edge dominating
sets of G. We refer to an edge dominating set with minimum cardinality as a γ ′(G)-set. The concept
of edge domination was introduced by Mitchell and Hedetniemi[13], and further studied for example in
[12, 6].
A Edge Roman dominating function(ERDF) of graph G is a function f : E(G) −→ {0, 1, 2} satisfying the
condition that every edge e with f(e) = 0 is adjacent to some edge e ′ with f(e ′) = 2. The Edge Roman
domination number of a graph G, denoted by γ ′R(G), is the minimum weight w(f) =

∑
e∈E(G) f(e) of an

Edge Roman dominating function of G. The concept of edge Roman domination has been several variants
of domination, see for example [9, 10, 14, 15, 8, 4]
A Edge double Roman dominating function(EDRDF) of graph G is a function f : E(G) −→ {0, 1, 2, 3} having
the property that if f(e) = 0, then edge e has at least two neighbors assigned 2 under f or one neighbor
e ′ with f(e ′) = 3, and if f(e) = 1, then edge e must have at least one neighbor e ′ with f(e ′) > 2. The
weight of an edge double Roman dominating number of f, denote by ω(f), is the value

∑
e∈E(G) f(e). The

weight of a EDRDF,
∑
e∈E(G) f(e). The minimum weight of a EDRDF is the edge double roman domina-

tion number of G, denoted by γ ′dR(G). If f is a EDRDF in a graph G, then we simply can represent f by
f = (E0,E1,E2,E3)(or f = (Ef0,Ef1,Ef2,Ef3) to refer to f), where E0 = {e ∈ E(G) : f(e) = 0},E1 = {e ∈ E(G) :
f(e) = 1},E2 = {e ∈ E(G) : f(e) = 2}, and E3 = {e ∈ E(G) : f(e) = 3}.
In this note we initiate the study of the Edge double Roman domination in graphs and present some
(sharp) bounds for this parameter. In addition, we determine the Edge double Roman domination num-
ber of some classes of graphs.

2. Preliminaries and Exact Values

We begin by showing that for any graph G, there exists a γ ′dR-function of G where no edge is assigned
a 1, that is, E1 = ∅ for some γ ′dR-function of G.

Proposition 2.1. In a double Roman dominating function of weight γ ′dR(G), no edge needs to be assigned the value
1.

Proof. Let f be a γ ′dR-function on a graph G. Suppose that for some e ∈ E, f(e) = 1. This means that there
is a edge e ′ ∈ N(e), such that either f(e ′) = 2 or f(e ′) = 3. If f(e ′) = 3, then we can achieve a Edge double
Roman dominating function by reassigning a 0 to e. This results in a function with strictly less weight
than f, contradicting that f is a γ ′dR-function of G. If f(e ′) = 2, then we can create a Edge double Roman
domination function g defined as follows: g(x) = f(x) for all x /∈ {e, e ′},g(e) = 0, and g(e ′) = 3. This
result in a double Roman domination function with weight equal to f.

Let H be the family of connected graphs G of order n that can be built from n
4 copies of P4 by adding

a connected subgraph on the set of centers of n4 P4. We make use of the following.

Theorem A. [7] If G is a connected graph of order n > 3, then γdR(G) 6 5n
4 , with equality if and only if G ∈ H.

Theorem B. If n > 1, then γdR(Pn) = n for n ≡ 0 (mod 3) and γdR(Pn) = n+ 1 for n ≡ 1or 2 (mod 3)
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Theorem C. If n > 3, then γdR(Cn) = n for n ≡ 0 , 2 , 3 , 4 (mod 6) and γdR(Cn) = n + 1 for n ≡
1 , 5 (mod 6)

Theorem D. For n > 2, γdR(Kn) = 3

The following is obvious.

observation 2.2. For any nonempty graph G of order n > 2,

γ ′dR(G) = γdR(L(G))

Corollary 2.3. For n > 2, γ ′dR(K1,n) = 3.

Corollary 2.4. If n > 1, then γ ′dR(Pn) = n for n ≡ 0 (mod 3) and γ ′dR(Pn) = n− 1 for n ≡ 1or 2 (mod 3)

Corollary 2.5. If n > 3, then γ ′dR(Cn) = n for n ≡ 0 , 2 , 3 , 4 (mod 6) and γ ′dR(Cn) = n + 1 for n ≡
1 , 5 (mod 6)

Proposition 2.6. For a complete graph Kn with n > 4, γ ′dR(Kn) = n if n is even, and γ ′dR(Kn) = n+ 1 if n is
odd.

Proof. First let n > 4 be even. Let {e1, e2, ..., en
2
} be a perfect matching of Kn. Then assigning 2 to

each ei, i > 1, and 0 to each other edge produces a EDRDF for Kn, thus γ ′dR(Kn) 6 n. We use on
induction on n to show that γ ′dR(Kn) > n. The basis step of the induction is obvious for n = 4. Assume
the result holds for any even integer n ′ < n. Assume that γ ′dR(Kn) 6 n − 1. Let f be a γ ′dR(Kn)-
function. Let there is edge xx1 in G such that f(xx1) = 3. Let G = Kn − {x, x1}, clearly G ≡ Kn−2, and
f|V(G) is EDRDF for G. By the induction hypothesis w(f|V(G)) > γ ′dR(Kn−2) > n− 2. Consequently,
γ ′dR(Kn−2) 6 w(f|Kn−2) = w(f) − 3 = γ ′dR(Kn) − 3 6 n− 4, a contradiction. Thus γ ′dR(Kn) > n.
Now assume there is edge xx1 in G such that f(xx1) = 2. Let G = Kn − {x, x1}, clearly G ≡ Kn−2, and
f|V(G) is EDRDF for G. By the induction hypothesis w(f|V(G)) > γ ′dR(Kn−2) > n− 2. Consequently,
γ ′dR(Kn−2) 6 w(f|Kn−2) = w(f) − 2 = γ ′dR(Kn) − 2 6 n− 3, a contradiction. Thus γ ′dR(Kn) > n.
Now, let n > 3 be odd. Let {e1, e2, ..., en−1

2
} be a minimum matching of Kn. Then assigning 2 to each ei,

i = 1, 2, ..., n−1
2 , and f(en) = 2, and 0 to each other edge produces a EDRDF for Kn, thus γ ′dR(Kn) 6 n+ 1.

We use on induction on n to show that γ ′dR(Kn) > n+ 1. The basis step of the induction is obvious for
n = 3. Assume the result holds for any odd integer 5 6 n ′ < n. Assume that γ ′dR(Kn) 6 n. Let f be a
γ ′dR(Kn)-function. Let there is edge xx1 in G such that f(xx1) = 3. Let G = Kn − {x, x1}, clearly G ≡ Kn−2,
and f|V(G) is EDRDF for G. By the induction hypothesis w(f|V(G)) > γ ′dR(Kn−2) > n− 1. Consequently,
γ ′dR(Kn−2) 6 w(f|Kn−2) = w(f) − 3 = γ ′dR(Kn) − 3 6 n− 3, a contradiction. Thus γ ′dR(Kn) > n+ 1.
Now assume there is edge xx1 in G such that f(xx1) = 2. Let G = Kn − {x, x1}, clearly G ≡ Kn−2, and
f|V(G) is EDRDF for G. By the induction hypothesis w(f|V(G)) > γ ′dR(Kn−2) > n− 1. Consequently,
γ ′dR(Kn−2) 6 w(f|Kn−2) = w(f) − 2 = γ ′dR(Kn) − 2 6 n− 2, a contradiction. Thus γ ′dR(Kn) > n+ 1.

Proposition 2.7. Let Kr,s be a complete bipartite graph with partite sets X = {x1, x2, ..., xr} and Y = {y1,y2, ...,ys}.
If 1 6 r 6 s and s = r+ i, then

γ ′dR(Kr,s) =

{
2s if r > 2i
3r if r 6 2i

Proof. For r > 2i, the function f defined by f(xiyi) = 3 for 1 6 i 6 r and f(xiyj) = 0 for i 6= j, 1 6 i 6 r

and 1 6 j 6 s is an edge double Roman dominating function of weight 3r, which gives γ ′dR(Kr,s 6 3r.
Now proof that γ ′dR(Kr,s) > 3r.

suppose f is an edge double Roman dominating function of Kr,s with the minimum weight. Assume
a = |{e ∈ E(G) : f(e) = 3}| and b = |{e ∈ E(G) : f(e) = 2}|. If a > r and r 6 2i, then γ ′dR(Kr,s) = w(f) > 3r.
If a < r, r 6 2i and b > s, then γ ′dR(Kr,s) > 2s = 2(r+ i) = 2r+ 2i > 3r. If a < r and b < r. Let X contain
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at least a vertex u such that N(u) ∩ E3 = ∅ and let Y contain at least a vertex v such that N(v) ∩ E2 = ∅.
Since G is complete bipartite graph uv ∈ E(G) and uv not incident to any edge e with f(e) = 3 or f(e) = 2,
a contradiction. Thus a > r or b > s and we are done.

For r > 2i, the function f defined by f(xiyi) = 2 for 1 6 i 6 r and f(xryj) = 2 for i 6= j, 1 6 j 6 s

is an edge double Roman dominating function of weight 2s, which gives γ ′dR(Kr,s 6 2s. Now proof that
γ ′dR(Kr,s) > 2s. If b > s,then γ ′dR(Kr,s) > 2b > 2s. If b < s and a > r, then γ ′dR(Kr,s) > 3a > 3r =
3(s− i) = 4s− 3i = 2s+ s− 3i = 2s+ r+ i− 3i = 2s+ r− 2i > 2s, a contradiction. If b < s and a < r,as
above, a contradiction.

3. Bounds

Proposition 3.1. For any connected graph G, 2γ ′(G) 6 γ ′dR(G) 6 3γ ′(G). Equality for the upper bound
holds if and only if there is a γ ′dR(G)-function with E2 = ∅. Equality for the lower bound holds if and only if
G ∈ {K2,C4,K4}.

Proof. The bounds are obvious we prove the equality parts. For the upper bound, let G be a connected
graph with γ ′dR(G) = 3γ ′(G). Let S be a γ ′(G)-set. Then assigning 3 to each edge of S, and 0 to each
other edge of G, produces a desired γ ′dR(G)- function. Conversely, assume that a γ ′dR(G)-function f with
E2 = ∅. Then E3 is an edge dominating set for G, thus γ ′(G) 6 γ ′dR(G)

3 . Now, the result follows. Next, we
consider the equality of the lower bound let f = (E0,E2,E3) be any γ ′dR(G)-function. It is well known that
E2 ∪ E3 is an edge dominating set for G. Hence γ ′(G) 6 |E2|+ |E3|. Thus,

γ ′dR(G) = 2|E2|+ 3|E3| > 2(|E2|+ |E3|) > 2γ ′(G)

It follows that |E3| = 0. Suppose that E2 is not independent. Let {e1, e2} ∈ E2 such that e1 and e2 are
incident at one common vertex. Then replacing f(e1) by 3, and f(e2) by 0 produces a γ ′dR(G)-function g
with |E

g
3 | 6= 0, a contradiction. Thus E2 is independent.

Now, we show that |E2| 6 2. Suppose to the contrary, that |E2| > 3. Let ww1,u1a,u2b ∈ E2 such that
u1 ∈ N(w1) and u2 ∈ N(w2). Clearly, f(u1w1) = f(u2w2) = 0. Then E2 ∪ {u1w1,u2w2}− {u1a,u2b,w1w2}

is an edge domination set of G, contradiction. We conclude that |E2| 6 2. If |E2| = 1, then clearly, G = K2.
Thus, assume that |E2| = 2, so G ∈ {C4,K4}.

Let E be the class of all graphs G that can be obtained from k > 1 double stars S1 = S(r1, s1),S2 =
S(r2, s2), ...,Sk = S(rk, sk), where ri, si > 2 for i = 1, 2, ..., k, as follows. Let A be the set of central vertices
of all stars S1,S2, ...,Sk. Then G is obtained from S1,S2, ...,Sk by adding some edges between vertices of
A, or adding some new vertices and joining each new vertex to at least two vertices of A, Figure 1 shows
a graph in E.

Figure 1: Structure of graphs in the family E

Theorem 3.2. For any connected graph G of order n > 2, γdR(G) 6 2γ ′dR(G), with equality if and only if G ∈ E.
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Proof. Let G be a graph with no isolated vertex, and f = (E0,E1,E2,E3) be any γ ′dR-function. Let g be
defined on V(G) by assigning f(e) to both x and y for any edge e = xy ∈ E2 ∪E3 and 0 to any other vertex
of G. Then g is a DRDF for G, and so γdR(G) 6 2γ ′(G).
Assume that equality holds. let f = (E0,E1,E2,E3) be a γ ′dR(G)-function such that |E3| is maximum. We
show that E3 is independent. Suppose that there are three u, v,w such that uv ∈ E3 and vw ∈ E3. Let g
be defined on V(G) by assigning f(e) to both x and y for any edge e = xy ∈ E2 ∪ E3 − {uv, vw}, 3 to u
and w, and 0 to v and to any other vertex of G. Then g is a DRDF for G of weight less than 2γ ′dR(G), a
contradiction. Thus E3 is independent.
We next show that E2 is independent. Suppose that there are three u, v,w such that uv ∈ E2 and vw ∈ E2.
Let g be defined on V(G) by assigning f(e) to both x and y for any edge e = xy ∈ E2 ∪ E3 − {uv, vw}, 2 to
u and w, and 0 to v and to any other vertex of G. Then g is a DRDF for G of weight less than 2γ ′dR(G), a
contradiction. Thus E2 is independent.
We next show that for every edge e = uv ∈ E0. at least one of u and v is incident on an edge of E3.
Suppose that there is an edge e = uv ∈ E0 such that neither u nor v is incident on an edge of E3. Then
there are vertices a ∈ N(u) − {v} and b ∈ N(v) − {u} such that ua ∈ E2 and vb ∈ E2. Let g be defined on
V(G) by assigning f(e) to both x and y for any edge e = xy ∈ E2 ∪ E3 − {uv, vb}, 2 to b, and 0 to v and
to any other vertex of G. Then g is a DRDF for G of weight less than 2γ ′dR(G), a contradiction. Thus for
every edge e = uv ∈ E0, at least one of u and v is incident on an edge of E3.
We next show that E2 = ∅. Suppose that E2 6= ∅. Let e = uv ∈ E2. Since G is connected, we may
assume that deg(u) > 2. Let a ∈ N(u) − {v}, clearly, xa ∈ E0. By the previous argument there is a vertex
b ∈ N(a) − {u} such that ab ∈ E3. Let g be a defined on V(G) by assigning f(e) to both x and y for any
edge e = xy ∈ E2 ∪ E3 − {uv} and 2 to v and 0 to any other vertex of G. Then g is a DRDF for G of weight
less than 2γ ′dR(G), a contradiction.
Let S =

⋃
xy∈E3

{x,y}. Clearly, S is a dominating set for G. We show that V(G)−S is independent. Suppose
that V(G) − S is not independent. Let ab be an edge with a,b ∈ V(G) − S. thus f(ab) = 0. Since E2 = ∅,
there is a vertex t ∈ N(a) − b such that f(ta) = 3 or t ′ ∈ N(b) − a such that f(t ′a) = 3. Without loss
of generality assume that t ∈ N(a) − b and f(ta) = 3, thus a ∈ S, a contradiction. Thus, V(G) − S in
independent.
We now show that any vertex of S has at least a neighbor V(G) − S. Assume that a vertex u ∈ S has not
neighbor in V(G) − S. Let e = uv ∈ E3. Then g defined on V(G) by assigning f(e) to both x and y for any
edge xy ∈ E3 − {uv}, 3 to v and 0 to any other vertex of G, is a DRDF for G of weight less than 2γ ′dR(G), a
contradiction.
We now show that any vertex of S has at least two private neighbors V(G)− S. Assume that a vertex x ∈ S
has no private neighbor in V(G) − S. Let e = uv ∈ E3. Then g defined on V(G) by assigning f(e) to both
x and y for any edge e = xy ∈ E3 − {uv}, 3 to v and 0 to any other vertex of G, is a DRDF for G of weight
less than 2γ ′dR(G), a contradiction.
Next, assume that a vertex x ∈ S has precisely one private neighbor in V(G) − S. Let e = uv ∈ E3. Then g
defined on V(G) by assigning f(e) to both x and y for any edge e = xy ∈ E3 − {uv,ua}, 3 to v and 2 to a
and 0 to any other vertex of G, is a DRDF for G of weight less than 2γ ′dR(G), a contradiction. We conclude
that any vertex of S has at least two private neighbors in V(G) − S. Since V(G) − S is independent, any
vertex of S is a strong support vertex. Now, can see that G ∈ E.
The conversely that G ∈ E. Obviously that γdR(G) 6 6t and γ ′dR(G) 6 3t. Assume f is γdR(G)-function,
thus w(f) = γdR(G). Let ui, vi ∈ S and zi1, zi2, ..., zit and z ′i1, z ′i2, ..., z ′it are leaves of ui and vi. Obviously
f(ui)+

∑ti
j=1 f(zij) > 3t and f(vi)+

∑t
j=1 f(z

′
ij) > 3t. Thus f(ui)+ f(vi)+

∑ti
j=1 f(zij)+

∑t
j=1 f(z

′
ij) > 6t >

2γ ′dR(G) > γdR(G).

Proposition 3.3. The difference γ ′dR(T) − γdR(T) can be arbitrarily large.

Proof. For each integer n > 2, let G be a graph obtained from K1,2n, by adding a perfect matching on the
set of leaves of K1,2n. Clearly, γdR(G) 6 3 and γ ′dR(G) 6 2n+ 1. Thus γ ′dR(G) − γdR(G) 6 2(n− 1). Let
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A1,A2, ...,An, n, n triangle in K1,2n. Then f(Ai) > 2 to each i. There is 1 6 j 6 n, such that f(Aj) = 3.
Thus

∑
f(Ai) 6 2n+ 1.

Proposition 3.4. For any connected graph G of size m > 2 and ∆(G) > 2, γ ′dR(G) 6 2m− 2∆(G) + 3. Equality
holds if and only if G is a star of order at least of three.

Proof. Let v be a vertex of maximum degree k = ∆(G) and let N(v) = {v1, v2, ..., vk}. Without loss of
generality assume that deg(v1) > deg(vi), i = 2, 3, ..., k. Define f : E(G) → {0, 1, 2, 3} by f(vv1) = 3,
f(e) = 0. If e is incident with v or v1 and f(e) = 2 otherwise. It is easy to see that f is a EDRDF of G
and so γ ′dR(G) 6 2m− 2(deg(v) + deg(v1) − 2) + 3 6 2m− 2∆(G) + 3. Assume that equality holds. Then
deg(v1) = 1. Consequently, G is a star of order at least three. The converse is obvious.

Proposition 3.5. Let G be a graph of size m, minimum degree δ > 1 and maximum degree ∆. Then

γ ′dR(G) >
(2δ+1)m
(2∆−1) −m

Proof. Assume that g : E(G) → {0, 1, 2, 3} is a γ ′dR(G)-function. Define f : E(G) → { 1
4 , 1

2 , 3
4 , 1} by f(e) =

g(e)−1
4 for each e ∈ E(G). We have∑

e∈E f(NG[e]) >
∑
e=uv∈E

g(NG[e])+deg(u)+deg(v)−1
4

> 2mδ
4 +

∑
e=uv∈E

g(NG[e])−1
4

> 2mδ
4 + m

4 =
(2δ+1)m

4 .

On the other hand, ∑
e∈E f(NG[e]) =

∑
e=uv∈E(deg(u) + deg(v) − 1)f(e)

6
∑
e∈E(2∆− 1)f(e)

= (2∆− 1)f(E(G)).

BY (1) and (2), f(E(G)) > (2δ+1)m
4(2∆−1) . Since g(E(G)) = 4f(E(G)) −m,

γ ′dR(G) = g(E(G)) >
(2δ+1)m
(2∆−1) −m,

as desired.

Corollary 3.6. Let G be a r-regular graph of order n. Then γ ′dR(G) >
nr

(2r−1) .

Theorem 3.7. [16] Any line graph is claw-free.

Theorem 3.8. For any connected graph G of order n > 4 and size m, γ ′dR(G) 6
5m

4 , equality holds if and only if
G = n

5 P5.

Proof. Let G be a connected graph of order n > 4. By theorem 2.2 and A, γ ′dR(G) = γdR(L(G)) 6
5|V(L(G))|

4 = 5m
4 . Assume that equality holds. Then γdR(L(G)) =

5|V(L(G)|
4 and by theorem A, V(L(G))

can be built from n
4 copies of P4 by adding a connected subgraph on the set of centers of n4 P4. By Theorem

3.7, L(G) = n
4 P4. This implies that G = n

5 P5. The converse in obvious.

Corollary 3.9. For any tree T of order n > 4, γ ′dR(T) 6
5n−5

4 , equality holds if and only if T = n
5 P5.

We close this section with the following upper bound.

Theorem 3.10. For any connected graph G of size m,

γ ′dR(G) 6 3( 1+ln(∆+δ−1)
2δ−1 )m.
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Proof. It is known in [7] that for any graph G of order n, γdR(G) 6 3γ(G). Now by observation 2.2,

γ ′dR(G) = γdR(L(G))

6 3γ(L(G))

6 3( 1+ln(1+δ(L(G))
1+δ(L(G)) )n(L(G))

6 3( 1+ln(∆+δ−1)
2δ−1 )m.
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